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Abstract. It was shown by Jaroszkiewicz and Strange in 1985 that nuclear spin relaxation due
to dipolar coupling between like spins diffusing on inequivalent sites involves magnetization
recoveries which are linear combinations of exponentials. An alternative approach to obtaining
the relevant rate equations is described, which starts from the well known expressions for dipolar
relaxation of pairs of spins. The method can be extended easily to other inequivalent-site systems
involving both like and unlike diffusing spins. The results for the multiexponential magnetization
recoveries can be calculated by routine numerical methods.

1. Introduction

The basic theory of nuclear spin relaxation due to magnetic dipolar coupling between pairs
of spins undergoing relative diffusion is well known (Abragam 1961). For like spins moving
on equivalent crystal sites the resultant magnetization recovery is an exponential, while for
unlike spins the magnetization recoveries of each spin species are, in general, sums of two
exponentials. It has been shown by Jaroszkiewicz and Strange (1985) (to be referred to as
JS) that the magnetization recoveries of like spins diffusing on inequivalent sites also involve
a sum of exponentials. There are therefore several relaxation rates possible corresponding to
the exponents of the various exponentials. A relaxation rate can also show more complicated
behaviour as a function of temperature than is the case for diffusion on equivalent sites, with
more than a single maximum possible. The theory was applied by JS to analyse relaxation
data for the ionic conductor LaF3 in which the mobile fluorine anions diffuse on several
inequivalent sites. Another example of a single nuclear species diffusing on inequivalent
sites is the diffusion of hydrogen in some complex metal–hydrogen systems (Barnes 1997).
In such cases the diffusing spins may also have significant dipolar interaction with another
species of fixed spins, such as F–La interactions in LaF3 and H–metal nuclei interactions in
metal–hydrogen systems. It is sometimes possible to measure the magnetization recoveries
for both the diffusing and the fixed nuclear species separately.

In order to deduce information about the possible jump rates from the experimental data
it is necessary to relate the magnetization recoveries to the spectral density functions of the
fluctuations of the dipolar fields. The analysis used by JS was a first-principles development
of these expressions using time-dependent perturbation theory. An aim of this paper is to
show that such results can also be obtained more directly from the Abragam expressions for
relaxation of a pair of interacting like or unlike spins. The magnetization components are
sums of the contributions from expectation values of the corresponding spin components
on each type of site. These expectation values are assumed to be simple superpositions of
the relaxation due to all possible interactions with other spins and include jumps between
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inequivalent sites which change the site type of the magnetization to which they contribute.
Each contribution to the relaxation from spin pairs is obtained from the basic Abragam
expressions. This approach gives a direct physical interpretation of the processes involved.
It also provides a straightforward method of extending the theory to other situations.

2. Derivation of rate equations

The system to be considered is a set of mobile nuclear species I diffusing on a set of crystal
sites which can be subdivided into subsets of inequivalent sitesα = 1, 2, . . . , n. As shown
by JS, the rate equations for the components of magnetizationMα of the I spins on the
α-sublattice are of the form

dMα

dt
= −

n∑
β=1

CαβM
β α = 1, 2, . . . , n (1)

where the time-independent coefficientsCαβ depend on the spectral density functions of the
magnetic dipolar fluctuations and the rates of jumps between sublattices. The notation
M here refers to the longitudinal componentMz, or transverse componentMx of the
magnetization in the laboratory frame, or the componentMx in the rotating frame in a spin-
locking field. For a single set of equivalent sites the coefficientC becomes the corresponding
relaxation rateT −1

1 , T −1
2 or T −1

1ρ , respectively, for each of these cases.
There are two contributions to changes in magnetization in (1): the physical jumping

of spins between inequivalent sites, and the relaxation induced by the magnetic dipolar
fluctuations between pairs of spins. The contributions toCαβ from the physical jumping are

Cαβ =

−0βα α 6= β∑
β ′ 6=α

0αβ ′ α = β (2)

where0αβ is the jump frequency for a spin from a particular site of typeα to any site of
typeβ.

The contributions to the coefficientsCαβ from the dipolar fluctuations can be obtained
from the well known expressions for relaxation of like- and unlike-spin pairs (Abragam
1961) provided the interaction of I spins on different sublattices are deduced from the
expressions for unlike spins. The Abragam expressions provide differential equations for
the expectation values of the components of the spin operators. These equations can be
expressed in the form of (1) by summing over the appropriate sites and expressing the
equations in terms of magnetization components. The interactions of spins on different
sublattices need to be treated as unlike spins so that the magnetization on each sublattice
can be calculated.

For longitudinal relaxation in the laboratory frame, with both spins on the same
sublattice, equations (75) and (76) on p 291 of Abragam (1961) give

Cαα = K
{

3

2
J (1)αα (ω)+

3

2
J (2)αα (2ω)

}
(3)

whereK = γ 4h̄2I (I + 1), γ is the gyromagnetic ratio of an I spin andω = γB0 is the
resonant frequency of an I spin in an applied fieldB0. The functionsJ (p)αβ (ω) are spectral
density functions which are the temporal Fourier transforms of the correlation functions of
the magnetic dipolar fluctuations of a pair of spins on sublatticesα andβ at timet , averaged
over the possible starting configurations of the spins at time zero, as described by JS.
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For each of the pair of spins on different sublattices, equations (87) and (88) on p 295
of Abragam (1961) give

Cαα = K
∑
β ′ 6=α

{
1

12
J
(0)
αβ ′(0)+

3

2
J
(1)
αβ ′(ω)+

3

4
J
(2)
αβ ′(2ω)

}
(4)

Cαβ = KN
α

Nβ

{
− 1

12
J
(0)
αβ (0)+

3

4
J
(2)
αβ (2ω)

}
α 6= β (5)

whereNα is the number of sublattice sites of typeα. The termNα/Nβ arises from summing
the expectation values of spin operators to form the corresponding magnetizations. The
above expression has usedI = S in the Abragam equations.

For transverse relaxation in the laboratory frame, with both spins on the same lattice,
equation (79) on p 292 of Abragam (1961) gives

Cαα = K
{

3

8
J (2)αα (2ω)+

15

4
J (1)αα (ω)+

3

8
J (0)αα (0)

}
. (6)

If each of the spins are on different sublattices, equation (89) on p 296 gives, again taking
I = S,

Cαα = K
∑
β ′ 6=α

{
5

24
J
(0)
αβ ′(0)+

9

4
J
(1)
αβ ′(ω)+

3

8
J
(2)
αβ ′(2ω)

}
. (7)

In this case, however, there are additional secular terms to those considered by Abragam
(1961) in equation (41) on p 279, which arise for like spins which are on inequivalent sites.
Evaluating these terms gives

Cαβ = KN
α

Nβ

{
1

6
J
(0)
αβ (0)+

3

2
J
(1)
αβ (ω)

}
α 6= β. (8)

It can be seen that the sum of (7) and (8) reduces to (6) when the sublattices are identical,
as expected.

The expressions forCαβ in (1) can finally be obtained by adding the contributions above.
The equations for longitudinal relaxation are obtained by adding (2)–(5) and the equations
for transverse relaxation obtained by adding (2) and (6)–(8). The resulting equations for
I = 1

2 are identical to the corresponding terms in (2.30) and (2.31) of JS (except for a term

M
β
x missing in the first term of the last line of (2.30) in JS).

JS also included in their relaxation theory the dipolar interaction between diffusing I
spins and fixed S spins, where the S spins are on a separate set of sites. In general, the
relaxation of the S magnetization then also needs to be included in (1) which increases the
number of equations and dependent variables fromn to n+1. The additional magnetization
will be denotedMs . This I–S interaction can also be incorporated in the above scheme by
using the corresponding Abragam equations above for unlike spins I and S. For longitudinal
magnetization, equation (88) on p 295 of Abragam (1961) gives

Cαα = K S(S + 1)γ 2
S

I (I + 1)γ 2
I

{
1

12
J (0)αs (ω − ωs)+

3

2
J (1)αs (ω)+

3

4
J (2)αs (ω + ωs)

}
(9)

Cαs = K S(S + 1)γ 2
S

I (I + 1)γ 2
I

Nα

Ns

{
− 1

12
J (0)αs (ω − ωs)+

3

4
J (2)αs (ω + ωs)

}
(10)

with similar results forCsα by interchangingI andS, and whereωs = γsB0 is the resonant
frequency of the S spins. These terms can then be added to the previous contributions to
form the coefficients in (1) for then+ 1 equations.
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JS assumed that the S spins affect the I spins but remain unaffected by them. This
is equivalent to omitting the terms (10) above and the number of equations in (1) is not
increased. Adding in the remaining terms (9) gives agreement with the full JS equations
for laboratory frame relaxation forI = 1

2.
For transverse relaxation, equation (89) on p 296 of Abragam (1961) gives

Cαα = K S(S + 1)γ 2
S

I (I + 1)γ 2
I

{
1

6
J (0)αs (0)+

1

24
J (0)αs (ω − ωs)+

3

4
J (1)αs (ω)+

3

2
J (1)αs (ωs)

+ 3

8
J (2)αs (ω + ωs)

}
(11)

andCαs = 0. This again leads to agreement with the corresponding terms in (2.30) of JS.
It is possible to deduce the coefficients in (1) for relaxation in the rotating frame from

the corresponding expressions in the laboratory frame using the method of Kelly and Sholl
(1992) for interactions between like, but not necessarily equivalent, spins. In this method
the rotating frame expressions are obtained by replacingJ (p)(pω) in the laboratory frame
expressions byJp(ω1, ω), whereω1 = γB1 is the resonant frequency in the rotating field
B1, and where

J0(ω1, ω) = 1

4
J (0)(0)+ 9

8
J (2)(2ω) (12)

J1(ω1, ω) = 1

2
J (1)(ω)+ 1

8
J (2)(2ω) (13)

J2(ω1, ω) = 1

4
J (0)(2ω1)+ 2J (1)(ω)+ 1

8
J (2)(2ω). (14)

Following this procedure gives agreement with (2.45) of JS for all the terms arising from
interactions between I spins. The terms arising from interactions between unlike spins
cannot be deduced in this way since the Kelly and Sholl relations are only valid for like
spins.

The above theory enables the coefficientsCαβ in the rate equations to be written down
from the basic Abragam relations for relaxation due to a pair of like or unlike spins
undergoing relative diffusion. It is then necessary to obtain expressions for the spectral
density functions. As discussed by JS the evaluation of these functions taking into account
the details of the diffusion between the inequivalent sublattices is a formidable task. A
simple model is to assume that the correlation between a pair of spins is destroyed completely
as soon as either of the pair of spins has a jump. The probability that no jump has occurred
in a time t is exp(−0̃t), where0̃ is the mean jump frequency for a jump of either spin.
The corresponding density function for a polycrystalline sample is then (JS)

J
(q)

αβ =
4Cq

15

0̃

ω2+ 0̃2

∑
i(αβ)

p(ri )

r6
i

(15)

whereC0 = 6, C1 = 1, C2 = 4, the summation is over all sites on sublatticeβ relative
to a site on sublatticeα andp(ri ) is the probability of the site on theβ-sublattice being
occupied by a spin.

3. Solution of the rate equations

The rate equations (1) may be written in matrix form as

dM
dt
= −CM (16)
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whereM is a column matrix of dimensionn, each element of which is the appropriate
component of the magnetizationMα of the I spins on theα-sublattice. The matrixC is
square with elementsCαβ which can be expressed in terms of appropriate spectral density
functions. The solution of this equation can be written as

M(t) = Xe−DtX−1M(0) (17)

where D is the diagonal matrix of eigenvalues ofC, X is the matrix of corresponding
eigenvectors andM(0) is the initial magnetization on each sublattice. The ratios of
the components ofM(0) are determined by the relative occupation probabilities of the
sublattices by the spins.

The observed magnetization is the sum of the contributionsMα(t) over the sublattices
which can be occupied by spins of a particular type. For the examples in the previous
section, where the S spins are unaffected by the I spins, the sum is over all sublattices. In
these cases an explicit expression for the observed magnetization recovery to equilibrium
M(t) is

M(t) =
n∑
α=1

Mα(t) =
n∑
i=1

Aie
−λi t (18)

whereλi are the eigenvalues ofC and the coefficientsAi are given by

Ai =
n∑

j,k=1

XjiX
−1
ik M

k(0). (19)

Equations (5.2) and (5.3) of JS are the expressions (18) and (19) above evaluated explicitly
for n = 2. While the algebraic complexity of explicit solutions increases rapidly for largern,
it is straightforward to evaluateλi andAi in (16) using standard numerical matrix methods.
If the relaxation of the fixed S spins was included in the above theory the magnetization
recoveriesMs(t) could also be evaluated in a similar manner.

4. Discussion

A model of spin occupancies on particular sublattices, and how the spins diffuse between
them, enables the matrixCαβ in (1) to be constructed in terms of parameters describing the
rates of jumps,0αβ , of spins between sublattices. The form of the magnetization recoveries
for longitudinal or transverse relaxation in the laboratory frame, or relaxation in the rotating
frame, can then be calculated from equations (18) and (19). The magnetization recoveries
will consist ofn exponentials corresponding to the number of sublattices involved, but not
all of these will necessarily be observable. This is because some of the eigenvaluesλi
may be very large, and hence the decay component is too rapid to be observed, or because
their weightingsAi are too small to be significant. It could even be the case that only a
single-exponential recovery is observed.

The aim in general is to obtain a fit to the observed relaxation data, typically measured
as a function of temperature at possibly several different frequencies, by a suitable choice of
parameters specifying the jump rates. The fitting can involve data for both the eigenvalues
λi and the weightingAi of each component in the magnetization as functions of temperature
and frequency. For complex systems the number of parameters could make the analysis of
the data quite difficult and some simplification of the model based on physical arguments
would usually be necessary, as was the case for LaF3 considered by JS. In cases where only
a limited number of exponentials are observed in the magnetization recoveries it should be
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possible to show from the above analysis that this is a result of the unobserved terms having
either large eigenvalues or small weightings.

The general procedure outlined above for the analysis of nuclear spin relaxation in
systems with inequivalent sites can be immediately generalized to other examples, such as
the inclusion of quadrupolar relaxation, or the diffusion of mixed spin species on inequivalent
sites, such as H and D in metal–hydrogen systems. There are additional complications for
the case of quadrupolar nuclei with non-zero static quadrupole interactions which have been
described by Schimmeleet al (1987).

In all such cases, the coefficients of the relaxation matrix can be written down
immediately for a particular model of the diffusion between sublattices. While the number
of parameters involved can be a complicating factor, there are also more data for analysis
than is the case for simple systems because of the multiexponential nature of the relaxation.
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